Locating a Two-wheeled Robot Using Extended Kalman Filter
نویسندگان
چکیده
Original scientific paper The Kalman filter is a very general method of filtering which can solve problems such as optimal estimation, prediction, noise filtering, and optimal control. A problem with detection of correct path of moving objects is the received noisy data. Therefore, it is possible that the information is incorrectly detected. There are Different methods to extract the correct data from the received information. This paper aims to detect the path of a two-wheeled robot using extended Kalman filter. For this purpose, triangular, circular, elliptical, and Sinusoidal paths were used to explore various scenarios. The results showed that the Kalman filter optimally detects the correct path with less than 3 % error rate. These results also show that error rate related to detect circular and triangular paths has the highest and lowest value, respectively, using the extended Kalman filter; in addition, the results showed that the error rate strongly depends on path changes.
منابع مشابه
Mobile Robot Navigation Error Handling Using an Extended Kalman Filter
Obviously navigation is one of the most complicated issues in mobile robots. Intelligent algorithms are often used for error handling in robot navigation. This Paper deals with the problem of Inertial Measurement Unit (IMU) error handling by using Extended Kalman Filter (EKF) as an Expert Algorithms. Our focus is put on the field of mobile robot navigation in the 2D environments. The main chall...
متن کاملMobile Robot Navigation Error Handling Using an Extended Kalman Filter
Obviously navigation is one of the most complicated issues in mobile robots. Intelligent algorithms are often used for error handling in robot navigation. This Paper deals with the problem of Inertial Measurement Unit (IMU) error handling by using Extended Kalman Filter (EKF) as an Expert Algorithms. Our focus is put on the field of mobile robot navigation in the 2D environments. The main chall...
متن کاملNeural Control for a Differential Drive Wheeled Mobile Robot Integrating Stereo Vision Feedback
This paper proposes a tracking control method for a differential drive wheeled mobile robot with nonholonomic constraints with an inverse optimal neural controller. It is based on two techniques: first, an identifier using a discrete-time recurrent high-order neural network (RHONN) trained with an extended Kalman filter (EKF) algorithm is employed; second, an inverse optimal control is used to ...
متن کاملIdentification of an Autonomous Underwater Vehicle Dynamic Using Extended Kalman Filter with ARMA Noise Model
In the procedure of designing an underwater vehicle or robot, its maneuverability and controllability must be simulated and tested, before the product is finalized for manufacturing. Since the hydrodynamic forces and moments highly affect the dynamic and maneuverability of the system, they must be estimated with a reasonable accuracy. In this study, hydrodynamic coefficients of an autonomous un...
متن کاملA comparison of mobile robot pose estimation using nonlinear filters: simulation and experimental results
This paper explores and compares the nature of the non-linear filtering techniques on mobile robot pose estimation. Three non-linear filters are implemented including the extended Kalman filter (EKF), the unscented Kalman filter (UKF) and the particle filter (PF). The criteria of comparison is the magnitude of the error of pose estimation, the computational time, and the robustness of each filt...
متن کامل